Lecture 6

Note from last class

$$C(x, \nabla \phi) = \sum_{|\alpha|=n} A_{\alpha} \left(\frac{\partial \phi}{\partial x_1}\right)^{\alpha_1} \dots \left(\frac{\partial \phi}{\partial x_n}\right)^{\alpha_n} \tag{1}$$

We would like to emphasize that

 $d\phi(x) \in T_x^*M$ M-manifold

This indicates that C maps tangent bundle $T^*M \mapsto \mathbb{R}$

$$C(x,*):T_x^*M$$

. The characteristic cone at x is defined by the set

$$\{\xi \in T_x^*M : C(x,\xi) = 0\}.$$
 (2)

Lie's Viewpoint

Consider $f(x, y, u, u_x, u_y) = 0$ and some point $p = (x, y, z, t, w) \in \mathbb{R}^5$ then, f(p) = 0 is in fact a surface in \mathbb{R}^5 . This indicates that solving a PDE is essential finding a function u(x, y) that satisfies some surface conditions. In particular

$$J : u \mapsto (graph \ u, u_x, u_y) \tag{3}$$

$$S : f(p) = 0 \tag{4}$$

S and J are surfaces in \mathbb{R}^5 , where we solve for a function u such that

$$Ju \subset S$$
 (5)

SemiLinear 1^{st} Order equation

Let $\Omega \subset \mathbb{R}^n$ be an Open, Connected and Nonempty (i.e let be a domain). Let $\alpha : \Omega \mapsto \mathbb{R}^n$ define a vector field and $A := \sum_{i=1}^n \alpha_i(x) \partial_i$ define a differential operator. Then

$$A = \sum_{i=1}^{n} \alpha_i(x) \partial_i \tag{6}$$

$$\beta : \Omega \times \mathbb{R} \mapsto \mathbb{R} \tag{7}$$

Solve
$$Au = \beta(x, u)$$
 (8)

Definition 1. Let $I \subset \mathbb{R}$ be an interval.

 $\gamma : I \mapsto \mathbb{R}^n$

is called a Parameterized Characteristic Curve (PC-curve) if

$$\gamma'(t) = \alpha(\gamma(t)) \quad \forall t \in I$$

C-curve : $[\gamma] = \gamma(I)$ is the image of γ under I.

Class notes by Ibrahim Al Balushi

Lemma 1. Left $u: \Omega \mapsto \mathbb{R}$ be differentiable and let γ be a PC-curve, then

$$\frac{d \ u(\gamma(t))}{dt} = Au \bigg|_{\gamma(t)} \qquad t \in$$

Proof.

$$\frac{du(\gamma(t))}{dt} = \sum_{i} \partial_{i} u(\gamma(t)) \gamma_{i}'(t)$$
(9)

Ι

$$=\sum_{i}\partial_{i}u(\gamma(t))\alpha_{i}(\gamma(t))$$
(10)

$$= (Au)(\gamma(t)) = Au \Big|_{\gamma}$$
(11)

Lemma 2. Let $\alpha \in C^1$ and u be differentiable.

$$Au = \beta(x, u) \iff \frac{du(\gamma(t))}{dt} = \beta(\gamma(t), u(\gamma(t)))$$

on every PC-curve.

Proof. (⇒) By previous Lemma

$$\frac{du(\gamma(t))}{dt} = (Au)(\gamma(t)) = \beta(\gamma(t), u(\gamma(t)))$$

 (\Leftarrow) Let $x \in \Omega$. γ PC-curve with $\gamma(0) = x$.

$$(Au)(x) = (Au)(\gamma(t))\Big|_{t=0}$$
(12)

$$= \frac{du(\gamma(t))}{dt}\bigg|_{t=0} \tag{13}$$

by hypothosis (14)

$$= \beta(\gamma(t), u(\gamma(t))) \Big|_{t=0}$$
(15)

$$=\beta(x,u(x))\tag{16}$$

Cauchy Problem

Consider $\Gamma \subset \Omega$ surface with a function $g: \Gamma \mapsto \mathbb{R}$. Find solution for (8) such that

$$u\Big|_{\Gamma} = g$$

To do this, start with $\xi \in \Gamma$ then solve for PC-curve such that $\gamma(0) = \xi$. Denote $v := u(\gamma(t))$ so v_{ξ} simply denoted the v which satisfies $\gamma_0 = \xi$. Now Solve for

$$\frac{dv_{\xi}}{dt} = \beta(\gamma(t), v_{\xi}(t)) \qquad \text{By Lemma 1}$$
(17)

with
$$v_{\xi}(0) = g(\xi)$$
 (18)

So the solution for the ODE above $v_{\xi}(t)$ is a solution for PDE (8) along γ , so set

 $u(\gamma(t)) := v(t)$

Assume $\alpha \in C^k$ $\beta \in C^k$. We conclude by elementary ODE theory that $\gamma \in C^k$ so

$$f(t,v) := \beta(\gamma(t),v) \qquad f \in C^k$$

We know v is unique (also by elementary ode theory) so if u solves (8) then $u(\gamma(t)) = v_{\xi}(t)$ by uniqueness.

Assume $\forall \xi \in \Gamma$, $\alpha(\xi)$ is not tangent to Γ and suppose $\Sigma \subset \Gamma \times \mathbb{R}$

$$\underbrace{\varphi \ : \ \Sigma \mapsto \mathbb{R}^n}_{\text{suppose Injective}} \tag{19}$$

$$\varphi(\xi, t) = \gamma_{\xi}(t) \tag{20}$$

 $\implies \varphi: \Sigma \mapsto \varphi(\Sigma)$ is bijective. Now suppose we know value of u(x), we can solve for value at ξ by inversion; that is

$$\varphi^{-1}(x) =: (\xi(x), t(x))$$

provided the bijection above holds on a local subset then $u(x) = v_{\xi}(t(x))$ solves the PDE locally there.

Problem: Is u differentiable?

Inverse Mapping Theorem

Let

$$\varphi : A_{\mathbb{C}\mathbb{R}^n} \mapsto \beta_{\mathbb{C}\mathbb{R}^n}$$

 $D\varphi(x)v := \sum_{j} v_{j}\partial_{j}\varphi(x)$ where D is said to be total differential operator. Suppose $\varphi \in C^{k}$ and $D\varphi(a)$ invertible

$$\implies \exists X \ni a \ nbhd \ s.t \ \varphi: \ X \mapsto Y = \varphi(X) \in \ C'$$

I.e we have diffeomorphism, that is,

$$\exists \varphi^{-1} : Y \mapsto X \text{ and } \varphi^{-1} \in C^k.$$

In addition, if φ is injective then φ : $A \mapsto B$ is $C^k - diffeomorphism$.

Let

$$\varphi(\xi,t) = \Phi^t(\xi) \qquad \Phi^t : \ \Omega \mapsto \mathbb{R}^n$$

$$\Phi^{t+s}(\xi) = \Phi^t(\Phi^s(\xi)) \tag{21}$$

$$\left(\Phi^t\right)^{-1} = \Phi^{-t} \tag{22}$$

$$\frac{\partial}{\partial s} \Phi^{t+s}(\xi) = D\Phi^t(\Phi^s(\xi)) \frac{\partial}{\partial s} \Phi^s(\xi)$$
(23)

$$s = 0 : \frac{\partial}{\partial t} \Phi^{t}(\xi) = D \Phi^{t}(\xi) \alpha(\xi)$$

$$D \Phi(\xi, t)(\dot{\xi}, \dot{t}) = (D \Phi^{t}(\xi) \dot{\xi}, D \Phi^{t}(\xi) \alpha(\xi) \dot{t})$$
(24)
(25)

$$D\Phi(\xi, t)(\dot{\xi}, \dot{t}) = (D\Phi^t(\xi)\dot{\xi}, D\Phi^t(\xi)\alpha(\xi)\dot{t})$$
(25)

 $\dot{\xi} \in T_{\xi}\Gamma, \ \alpha(\xi) \notin T_{\xi}\Gamma \implies D\varphi \ non-degenrated \implies invertible$