
Lecture 6

Note from last class

C(x,5φ) =
∑
|α|=n

Aα

(
∂φ

∂x1

)α1

...

(
∂φ

∂xn

)αn

(1)

We would like to emphasize that

dφ(x) ∈ T ∗xM M −manifold

This indicates that C maps tangent bundle T ∗M 7→ R

C(x, ∗) : T ∗xM

. The characteristic cone at x is defined by the set

{ξ ∈ T ∗xM : C(x, ξ) = 0}. (2)

Lie’s Viewpoint

Consider f(x, y, u, ux, uy) = 0 and some point p = (x, y, z, t, w) ∈ R5 then, f(p) = 0 is in fact a surface
in R5. This indicates that solving a PDE is essential finding a function u(x, y) that satisfies some
surface conditions. In particular

J : u 7→ (graph u, ux, uy) (3)

S : f(p) = 0 (4)

S and J are surfaces in R5, where we solve for a function u such that

Ju ⊂ S (5)

SemiLinear 1st Order equation

Let Ω ⊂ Rn be an Open, Connected and Nonempty (i.e let be a domain). Let α : Ω 7→ Rn define a
vector field and A :=

∑n
i=1 αi(x)∂i define a differential operator. Then

A =

n∑
i=1

αi(x)∂i (6)

β : Ω× R 7→ R (7)

Solve Au = β(x, u) (8)

Definition 1. Let I ⊂ R be an interval.

γ : I 7→ Rn

is called a Parameterized Characteristic Curve (PC-curve) if

γ′(t) = α(γ(t)) ∀t ∈ I

C-curve : [γ] = γ(I) is the image of γ under I.
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Lemma 1. Left u : Ω 7→ R be differentiable and let γ be a PC-curve, then

d u(γ(t))

dt
= Au

∣∣∣∣
γ(t)

t ∈ I

Proof.

du(γ(t))

dt
=
∑
i

∂iu(γ(t))γ′i(t) (9)

=
∑
i

∂iu(γ(t))αi(γ(t)) (10)

= (Au)(γ(t)) = Au

∣∣∣∣
γ

(11)

Lemma 2. Let α ∈ C1 and u be differentiable.

Au = β(x, u) ⇔ du(γ(t))

dt
= β(γ(t), u(γ(t)))

on every PC-curve.

Proof. (⇒) By previous Lemma

du(γ(t))

dt
= (Au)(γ(t)) = β(γ(t), u(γ(t)))

(⇐)
Let x ∈ Ω. γ PC-curve with γ(0) = x.

(Au)(x) = (Au)(γ(t))

∣∣∣∣
t=0

(12)

=
du(γ(t))

dt

∣∣∣∣
t=0

(13)

by hypothosis (14)

= β(γ(t), u(γ(t)))

∣∣∣∣
t=0

(15)

= β(x, u(x)) (16)

Cauchy Problem

Consider Γ ⊂ Ω surface with a function g : Γ 7→ R. Find solution for (8) such that

u

∣∣∣∣
Γ

= g
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To do this, start with ξ ∈ Γ then solve for PC-curve such that γ(0) = ξ. Denote v := u(γ(t)) so vξ
simply denoted the v which satisfies γ0 = ξ. Now Solve for

dvξ
dt

= β(γ(t), vξ(t)) By Lemma 1 (17)

with vξ(0) = g(ξ) (18)

So the solution for the ODE above vξ(t) is a solution for PDE (8) along γ, so set

u(γ(t)) := v(t)

Assume α ∈ Ck β ∈ Ck. We conclude by elementary ODE theory that γ ∈ Ck so

f(t, v) := β(γ(t), v) f ∈ Ck

We know v is unique (also by elementary ode theory) so if u solves (8) then u(γ(t)) = vξ(t) by unique-
ness.

Assume ∀ξ ∈ Γ, α(ξ) is not tangent to Γ and suppose Σ ⊂ Γ× R

ϕ : Σ 7→ Rn︸ ︷︷ ︸
suppose Injective

(19)

ϕ(ξ, t) = γξ(t) (20)

=⇒ ϕ : Σ 7→ ϕ(Σ) is bijective. Now suppose we know value of u(x), we can solve for value at ξ by
inversion; that is

ϕ−1(x) =: (ξ(x), t(x))

provided the bijection above holds on a local subset then u(x) = vξ(t(x)) solves the PDE locally there.

Problem: Is u differentiable?

Inverse Mapping Theorem

Let
ϕ : A⊂Rn 7→ β⊂Rn

Dϕ(x)v :=
∑
j vj∂jϕ(x) where D is said to be total differential operator. Suppose ϕ ∈ Ck and Dϕ(a)

invertible
=⇒ ∃X 3 a nbhd s.t ϕ : X 7→ Y = ϕ(X) ∈ Ck

I.e we have diffeomorphism, that is,

∃ϕ−1 : Y 7→ X and ϕ−1 ∈ Ck.

In addition, if ϕ is injective then ϕ : A 7→ B is Ck − diffeomorphism.

Let
ϕ(ξ, t) = Φt(ξ) Φt : Ω 7→ Rn
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Φt+s(ξ) = Φt(Φs(ξ)) (21)(
Φt
)−1

= Φ−t (22)

∂

∂s
Φt+s(ξ) = DΦt(Φs(ξ))

∂

∂s
Φs(ξ) (23)

s = 0 :
∂

∂t
Φt(ξ) = DΦt(ξ)α(ξ) (24)

DΦ(ξ, t)(ξ̇, ṫ) = (DΦt(ξ)ξ̇, DΦt(ξ)α(ξ)ṫ) (25)

ξ̇ ∈ TξΓ, α(ξ) /∈ TξΓ =⇒ Dϕ non− degenrated =⇒ invertible
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